Anti-trypanosomal Activity of *Picrorrhiza kurroa* rhizomes against *Trypanosoma evansi*

Peter Shaba1,*, Sahadeb Dey1, Nitish Pandey Kurade2, Raj Kumar Singh3

1 Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh (243 122), India
2 Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh (243 122), India
3 Indian Veterinary Research Institute, Regional Station, Mukteswar, Uttranchal, (263 138) India

Article Info

Corresponding Author:
Peter Shaba
shabamine@gmail.com

How to Cite this Article

ABSTRACT

In our quest for more effective and efficient means of obtaining trypanocidal extracts/compounds from medicinal plants, for leads in developing new trypanocide against trypanosomes, *Picrorrhiza kurroa* rhizomes were extracted with solvent, methanol, at different concentrations (250-1000 µg/ml) and tested against *Trypanosoma evansi* on Alsever’s medium. Trypanosomes were suspended in Alsever’s solution with inactivated bovine serum at 58°C for 1 h at appropriate conditions for antitrypanosomal activity. Trypanosomes concentration was 1×10⁶ parasites/ml. In *vitro* cytotoxicity test of methanolic plant extract (MPE) of *P. kurroa* at concentrations (1.56-100 µg/ml) was done on Vero cells grown in Dulbecco’s Modified Eagle Medium (DMEM). At 250 µg/ml of MPE of *P. kurroa*, there was significant ant-trypanosomal activity with drastic reduction of trypanosomes count (40.00±0.0 to 4.667±0.67) was observed after 5 h of incubation. But at 500 µg/ml of MPE of *P. kurroa*, trypanosomes were completely killed in corresponding ELISA plate wells (40.00±0.0 to 0.0±0.0) after 5 h of incubation, which was statistically equivalent to diminazineaceturate (50µg/ml) standard drug at 4 h. Both MPE of *P. kurroa* rhizomes and diminazinaceturate were cytotoxic to Vero cells in all concentrations except at 1.56-6. 25 µg/ml. MPE of *P. kurroa* demonstrated marked anti-trypanosomal activity with significant difference (P ≤0.05 to 0.01). MPE of *P. kurroa* rhizomes and diminazinaceturate had the same level of in *vitro* cytotoxic effects on Vero cells. In this current report, Alsever’s medium supported trypanosomes with observed anti-trypanosomal activity. The outcome of this research could be further strengthened by (e.g. bioassay-guided purification) of *P. kurroa* for isolation of trypanocidal compound(s) that may lead to development of new trypanocide.

Keywords: Anti-trypanosomal activity, Cytotoxicity test, *Picrorrhiza kurroa* rhizomes, *Trypanosoma evansi*.
INTRODUCTION

Trypanosomosis, a blood protozoan parasitic disease of both animals and humans had resurged in endemic area where such disease thrives around the world particularly, in Africa and Latin America and pocket areas in USA being brought in by immigrants from Latin America (WHO, 2010). Trypanosomosis is caused by parasites under genus Trypanosoma with variant species in both animals and humans with devastating havocs (WHO, 2012). Direct losses due to trypanosomosis are estimated to amount to between US$1-1.2 billion each year whereas the indirect impact of AAT on agriculture in sub-Saharan Africa exceeds this amount. A pondered evaluation extrapolated for the total tsetse-infested lands values the total losses, in terms of agricultural Gross Domestic Product, at US$ 4.75 billion per year (FAO, 2004). Drawbacks (e.g. toxicity, resistance and emerged resistant strains of trypanosomes had emerged) had beset the limited class of available trypanocides (Nok and Nock, 2002).

From medicinal plants point of view, lots of research works had been documented on anti-trypanosomal activity potential with leads for further research and development of new trypanocide (Freiburghause et al., 1996; Nok and Nock, 2002; Kubuta et al., 2005; Shaba et al., 2006; 2007; 2011(ab); Wube et al., 2012; Obbo et al., 2013; Shaba et al., 2014).

Pharmacological active compounds such as Kutkin that contained mixture of picroside I and picroside II (Kutkoside) and Apocynin have been isolated and structures elucidated (Lee et al., 2006).

P. kurroa is hepatoprotective, anti-inflammatory, enhances cardiovascular functions, anti-asthmatic and antiviral. (Keche et al., 2010).

Previously, were ported in vitro trypanocidal evaluation of P. kurroa rhizomes using different medium (Shaba et al., 2012a). Current report was focused on assessing different medium and corresponding anti-trypanosomal activity. As a result of problems affecting limited classes of trypanocides, Picrorrhiza kurroa rhizomes were extracted with methanol and obtained MPE of P. kurroa were tested against Trypanosoma evansi.

MATERIALS AND METHODS

Chemicals
Silica gel-G for thin layer chromatography (TLC), solvents (hexane, chloroform, methanol, acetic acid and ethyl acetate) for extraction of plant material and development/analysis of TLC plates, vanillin for spray, and iodine for detection of bioactive constituents were used which were purchased from E. Merck, India.

Plant Material
Fresh Picrorrhiza kurroa rhizomes (Family: scrophulariaceae) which is known locally in Ayurveda medicine as Kutki or Katuki were obtained from Palampur, Himachal Pradesh, India. The plant material was subsequently identified at Institute of Himalayan Biosource and Technology, Palampur, Himachal Pradesh, India.

Preparation of Extract
The extraction was done based on the method of Stahl (1969). 20 g of dried Picrorrhiza kurroa rhizomes were powdered using laboratory pestle and mortar, and cold extracted with 200 ml of methanol (Analytical grade). Residues obtained were extracted twice in the same medium. The filtrates were combined, dried at 37°C and stored at 4°C until used.

Solvent Systems
In order to obtain the most suitable solvent system, the listed solvent systems were tested to develop the TLC plates according to the method of Stahl (1969).

- Chloroform/hexane/acetic acid (50:50:1)
- Chloroform/ethyl acetate/acetic acid (50:50:1)
- Methanol and chloroform (20: 80)

Thin Layer Chromatography (TLC) Plates
Aliquots (0.2 ml) of methanolic plant extract (MPE) of P. kurroa was applied on TLC plates, dried under room temperature and immersed inside the appropriate solvent systems in a glass jar. It was done to detect the presence of bioactive constituents in applied extracts. Method of Stahl (1969) was applied in the development of the TLC plates.
Animals
Swiss albino mice (20-30 g) of either sex were obtained from Animal Research Laboratory Section of Indian Veterinary Research Institute (IVRI) Izatnagar, maintained in standard environmental conditions and fed on a standard diet prepared by the institute with water ad libitum. Usage of mice in the experiment was strictly guided by laid down rules and regulations of committee on Ethics and Cruelty to Animals of the institute.

Test Organism
T. evansi was obtained from the Division of Parasitology, Indian Veterinary Research Institute (IVRI), Izatnagar and was maintained in the laboratory by serial sub-passages in Swiss albino mice. The strain was routinely tested for virulence as per the method of Williamson et al., (1982).

Trypanosomes Count
Counting of trypanosomes was carried out following the method of Lumsden et al., (1973). A number of fields (10-15) of each drop of blood or incubated media and parasites in triplicate were counted using glass slides under inverted microscope (400X). An average mean trypanosomes count was taken as number of trypanosomes per field.

In Vitro Trypanocidal Activity
In vitro trypanocidal activity was carried out according to the method of Talakal et al., (1995). A high parasitemic blood of a mouse was diluted with Alsever’s solution to obtain final trypanosomes concentration of 1x10^6 parasites/ml. The medium consist of Alsever’s solution and inactivated bovine serum at 37°C for 1 h. Suspension (180 µl of medium with trypanosomes) was added to 20 µl of the test MPE of *P. kurroa* rhizomes and the plates were incubated at 37°C under 5% CO2. The test was repeated at least thrice.

Stock of MPE of *P. kurroa* was solubilized in 1% dimethylsphoxide (DMSO). The concentration in the experiment had no deleterious effect by itself on host cells or trypanosomes. 1% DMSO in distilled water was used as control (Young et al., 2000).

In Vivo Infectivity Assessment
In vivo infectivity assessment of MPE of *P. kurroa* was carried out after completion of incubation for anti-trypanosomal activity. Contents of ELISA plate wells with reduced or immobilized and apparently killed trypanosomes from MPE of *P. kurroa* rhizomes were inoculated (0.1ml mouse⁻¹) into two groups of mice (six group⁻¹) via intra-peritoneum, and observed for more than 60 days for parasitemia (Woo, 1970; Igweh et al., 2002).

In Vitro Cytotoxicity Test
It was done according to the method of Sidwell and Hoffman, (1997). Vero cell line (SIGMA) was grown in DMEM in 96 wells micro culture plates. Each well was seeded with 500,000 cells ml⁻¹ and plates were incubated at 37°C with 5% CO2 for 48 h. After the formation of confluent monolayer, the supernatant was discarded and replaced with fresh medium. Confluent monolayer of Vero cell lines was treated with serial dilutions (1.56-100 µg ml⁻¹) of MPE of *P. kurroa* in triplicate and incubated for 72 h consecutively under the same conditions described previously. At 24 h interval, ELISA plate was observed under inverted microscope for cytotoxic effects as compared to untreated normal cells that served as control. In each case, after 72 h of incubation, the culture media of the incubated Vero cells was discarded. Adhered cells were stained with a drop of crystal violet in phosphate buffered solution. ELISA plates were then incubated for 24 h at 37°C in ordinary incubator. Plates were later observed under inverted microscope for cytotoxic effects. It was repeated thrice.

Statistical Analysis
Results of trypanocidal activity were expressed as mean ±SEM. Statistical analysis was done using Sigma stat (Jandel, USA).

RESULTS AND DISCUSSION
The results of current study were as presented in Tables (1 and 2).

Extraction
Methanol was used in the cold extraction of *P. kurroa* rhizomes with resultant exhibition of bioactive constituents depicted on the TLC plates. This is in line with extraction of some medicinal plants from Nigerian ethno medicine (Abiodun et al., 2012) and *Piper nigrum* (Black Pepper) (Shaba et al., 2012).
Solvent System

After concerted efforts in trial of solvent systems for a more suitable one, methanol/chloroform (20:80) appeared to be more effective in the development of TLC plates than other solvents tested with applied aliquots of *P. kurroa* accordingly. Distinct patterns of bioactive constituents from extract of *P. kurroa* rhizomes were detected, which were subsequently responsible for anti-trypanosomal activity. This is comparable to earlier report of development of TLC plates of MPE of *Picrorrhiza kurroa* rhizomes (2007) and *Khayasene galensis* bark (Shaba et al., 2011).

Table 1: *In vitro* trypanocidal activity of 100% methanolic extract of *Picrorrhiza kurroa* against *Trypanosoma evansi* on Vero cell line

<table>
<thead>
<tr>
<th>Concentration of plant extract in µg/ml</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
<th>5 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>40.00±0.0</td>
<td>35.00±0.58</td>
<td>17.67±0.67</td>
<td>10.33±0.33</td>
<td>4.667±0.67</td>
</tr>
<tr>
<td>500</td>
<td>40.00±0.0</td>
<td>13.33±0.33</td>
<td>4.667±0.33</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>750</td>
<td>38.33±0.33</td>
<td>10.67±0.67</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>1000</td>
<td>19.67±0.33</td>
<td>1.333±0.33</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>Diminazineaceturate (50) Positive control</td>
<td>22.33±0.33</td>
<td>9.000±0.58</td>
<td>1.333±0.33</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>Control (Negative control)</td>
<td>40.00±0.0</td>
<td>40.00±0.0</td>
<td>40.00±0.0</td>
<td>40.00±0.0</td>
<td>40.00±0.0</td>
</tr>
</tbody>
</table>

Bioassay status: significant reduction of parasites counts from concentration of 750 µg/ml and complete killing of parasites at 1000 µg/ml at 7th hour of observation. An average mean parasites count of 37.67±0.58 is statistically critical value. Average mean from 37.67±0.58 and below is significant between the treatment groups and negative control. (P ≤ 0.05 to 0.01).

Table 2: Cytotoxic effect of methanolic extract of *Picrorrhiza korrea* rhizomes on Vero cell line compared to diminazineaceturate (Berenil)

<table>
<thead>
<tr>
<th>Concentration of test material in µg/ml</th>
<th>Effects of test extract at various periods of incubation (24 h, 48 h, 72 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Picrorrhiza korrea</td>
</tr>
<tr>
<td>100</td>
<td>100%</td>
</tr>
<tr>
<td>50</td>
<td>100%</td>
</tr>
<tr>
<td>25</td>
<td>33.3%</td>
</tr>
<tr>
<td>12.5</td>
<td>0</td>
</tr>
<tr>
<td>6.25</td>
<td>0</td>
</tr>
<tr>
<td>3.13</td>
<td>0</td>
</tr>
<tr>
<td>1.56</td>
<td>0</td>
</tr>
</tbody>
</table>

Picrorrhiza korrea and diminazineaceturate were toxic to Vero cell line except at concentrations range of 6.25-1.56 µg/ml.

In vivo Infectivity Test

Group of mice inoculated with contents of ELISA plate wells with completely killed trypanosomes by MPE of *P. kurroa* rhizomes survived for more than 60 days, while other group of mice inoculated with contents of ELISA plate wells with reduced trypanosomes count by MPE of *P. kurroa* rhizomes died of parasitemia. This is in line with *in vivo* infectivity test of *Terminalia belirica* dried fruits (Shaba et al., 2009) and aqueous extract of *Brassica oleracea* (Igweh et al., 2002) in which similar pattern of in vivo infectivity were observed.

In Vitro Cytotoxicity Test

In vitro cytotoxicity test of MPE of *P. kurroa* rhizomes and diminazineaceturate at the same concentrations on Vero cells depicted different cytotoxic effects such as distortion, swelling, sloughing and death of Vero cells compared to negative normal cells in control wells, which were observed in all concentrations range except at 6.25-1.56 µg/ml.*P. kurroa* had the same level of *in vitro* cytotoxicity as diminazine, standard reference drug used. These findings are comparable to *T. belirica* dried fruits and methanolic *Plumbago zeylanica* root bark with similar cytotoxic effects though at much higher toxic concentrations than the later.

In Vitro Trypanocidal Activity

At t 250 µg/ml of MPE of *P. kurroa*, there was drastic reduction of trypanosomes counts but no complete killing of trypanosomes in the corresponding ELISA plate wells after 5 h of incubation. However, at 500 µg/ml of MPE of *P. kurroa*, trypanosomes were not detected in the corresponding ELISA plate wells at 5 h of incubation, which was statistically equivalent to
diminazineaceturate (50µg/ml) standard drug at 4 h. High activity of trypanocidal activity was observed with significant difference (P ≤0.05 to 0. 01). Already isolated compounds with elucidated structures (Picroside I and Picroside II (Kutkoside) and Apocynin) could be responsible for its trypanocidal activity. This result is comparable to antitrypanosomal activity of methanolic extract of Khayasene galensis root bark (Shaba et al., 2011), antitrypanosomal activity of some medicinal plants from Nigerian ethnomedicine (Abiodun et al., 2012) and evaluation of anti-trypanosomal activity of methanolic extracts of Moringa oleifera (Shaba et al., 2014) where different levels of anti-trypanosomal activity were observed irrespective of trypanosomes species used against methanolic extracts of different medicinal plants.

Also, ability of the extracts/purified compounds of medicinal plants to chelate trypanosomes DNA led to death of the trypanosomes had been documented (Sepulveda-Boza, 1996).

CONCLUSION

In this report, it could be concluded that MPE of P. kurroa possesses anti-trypanosomal compound(s), as previously documented, at distinct concentrations with maximum activity at the highest concentration. Also, Alsever’s medium tested was suitable and supported trypanosomes for the period of incubation, and corresponding trypanocidal activity observed. MPE of P. kurroa rhizomes and diminazineaceturate had the same level of in vitro cytotoxic effects on Vero cells. This further allows flexibility in using alternate medium to carry out this type of bioassay. More research work is needed such as purification of MPE of P. kurroa rhizomes for possible isolation of trypanocidal compound(s), a key ingredient to new drug development against trypanosomes.

ACKNOWLEDGEMENT

Financial contributions by Indian and Nigerian governments towards the research, invaluable advice/inputs by Dr. A. K Mishra, former Principal Scientist, contributions by other scientists and technical staff, Division of Medicine, Parasitology IVRI, IVRI Regional stations at Palampur and Mukteswarare highly acknowledged.

REFERENCES

